
On the Validity of the McConnell-I Model of Ferromagnetic Interactions: The
[2.2]Paracyclophane Example
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A formal comparison between a rigorous implementation of a Heisenberg Hamiltonian model in a VB space
with the McConnell-I model shows that the validity of the McConnell model rests upon a heuristic one-to-
one correspondence between spin density products in the latter with the difference of the spin exchange
density matrix elements in the former. Using a rigorous Heisenberg Hamiltonian, a numerical model
computation of the singlet/quintet stability for pseudoortho, pseudometa, and pseudopara bis(phenylmethylenyl)-
[2.2]paracyclophanes (modeled with the correponding singlet/triplet bis(methyl)[2.2]paracyclophanes) shows
that the McConnell model makes the correct prediction of low and high spin stability only because the
contributions from “closest contact” carbon atoms that are not directly aligned is rather small. In systems
where the alignment is not perfect, this cancelation may not hold. The association between spin density
products in the McConnell model with the difference of the spin exchange density matrix elements in the VB
Heisenberg Hamiltonian is shown to be valid because the McConnell model correctly predicts the leading
configuration terms in the VB expansion.

Introduction

The design of purely organic magnetic materials has been
the subject of considerable recent research.1 These materials
require the presence of a persistent free radicals,2 and the
formation of crystals made of these radicals showing spontane-
ous magnetization below a certain critical temperatureTc. Many
examples of such magnetic crystals are found in the family of
the so-calledR-nitronyl nitroxide radicals.1,3 Some of them
present bulk ferromagnetism, although up to now, only at low
critical temperatures.

The fact that different crystal phases of the same radical give
rise to different magnetic properties, suggests that molecular
magnetism in a crystal is strongly related to the relative
geometrical arrangement of the radicals within the crystal.1 Thus,
as a first step toward the rational design of purely organic
magnetic materials with higher critical temperatures, one
requires theories relating the magnetism with the crystal
structure. Rational design could be founded on a model or a
magnetostructural correlation, based on the observation of
known structures. Once the geometrical arrangements of the
molecules capable of producing ferromagnetic interactions are
known, one has to learn how to control the presence of these
arrangements in the packing of the crystal.

There are many models aimed at rationalizing magnetism-
structure correlations and in current use.1a,4 Many of these
models are designed to explain the magnetism in polynuclear
derivatives of transition metal compounds. This “through bond”
magnetism was first rationalized in a qualitative form by the
models of Anderson,5 Kahn,1b and Hay-Thibeault-Hoffmann.6

The latter two approaches give similar results and successfully
predict the presence of ferro and antiferromagnetic interactions,
and have been useful to establish qualitative magnetism-
correlation relationships.7 However, such approximations lack
the electron correlation effects required to properly describe
some of the properties of magnetic compounds, as those
observed in dinuclear compounds made of different magnetic
centers.8 This has prompted to the development of more
accurate approaches to these systems, aimed at the quantitative
study of the magnetic properties. Such methods have been
based on perturbation methods9 and on configuration interaction
methods such as the difference dedicated configuration inter-
action method.10 The broken symmetry approach introduced
by Noodleman, in the context of the density functional
methodology,11 also seems to give reasonable results in some
cases.12 Methods used to explain the high spin-low spin
ordering of states in diradical molecules13,14are closely related.

Of particular interest are models1,2,15-20 designed to explain
the magnetism in purely organic molecular systems via the so-
called “through-space” magnetism (to distinguish it from the
previous “through bond” magnetism). The most widely used
methods for magnetism in molecular crystals are based on the
models proposed by McConnell (also known as McConnell-I15

and -II16 models or mechanisms). The McConnell-II mechanism
is a charge-transfer model that was shown not to work in a
detailed work by Kollmar and Kahn.20 Thus, we will focus
our attention in the first model.

The McConnell-I model is based on a Heisenberg spin
Hamiltonian and predicts the presence of intermolecular ferro-
magnetic interactions only when short intermolecular contacts
are found in the crystal between atomsi, j bearing considerable
spin populationFiFj of opposite sign. Accordingly, the magnetic
behavior of a given molecular crystal can be rationalized by
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computing the spin distribution on the atoms of its constituent
molecules, a property available from experiment2,21 or from
theoretical computations.21,22

In spite of its popularity, the validity of the McConnell-I
model has never been demonstrated in a rigorous theoretical
way. Nevertheless, there is a good agreement between observed
magnetism and the predictions of the McConnell theory, based
upon accurate ab initio computations of spin densities for simple
model systems.23-24 The often quoted example is the singlet
vs quintet stability of the pseudoortho, -meta, and -para25 bis-
(phenylmethylenyl)[2.2]paracyclophane isomers. Here, the
predicted singlet vs quintet stability of the linked dimers is in
excellent agreement with the observed ESR experiments.

However, some experimental magnetostructural relationships
are difficult to explain by a straightforward application of the
McConnell-I model, raising doubts on its validity and range of
applicability. In this paper, we show that one may derive a
rigorous Heisenberg Hamiltonian in the context of a VB wave
function. Comparison with the McConnell theory, shows that
the product of the spin densitiesFiFj of the two molecular
fragments used in the McConnell theory must be taken in one-
to-one correspondence with two electron exchange density
matrix elements. A numerical computation on paracyclophane
compounds with the rigorous Heisenberg Hamiltonian shows
that this association has numerical validity. However, this
correct agreement is partly “accidental” and leads to a conceptual
interpretation that is not correct. As we shall demonstrate, high
spin stability is associated with the fact that “closest contact”
sites are always ferromagnetically coupled and that the ”closest
contact” sites for the singlet state must be more strongly
ferromagnetically coupled than for the triplet state.

Theory

Heisenberg Hamiltonians. A general Heisenberg spin-
exchange Hamiltonian can be written as follows

whereŜi is the spin operator associated with theith site, andÎ ij

is the identity spin operator. In theĤS operator defined in eq
1, the complexities of the wave function are absorbed into
parametersQ andJij and one associates an electron with each
site i [for a discussion see ref 26]. The expectation value of
the spin scalar product〈2Ŝi‚Ŝj〉 is just S(S + 1) - 3/2. A two-
electron example clarifies the meaning of eq 1. The expectation
value of 〈Ŝi‚Ŝj〉 for singlet and triplet states gives-3/4 and
+1/4. Therefore, from eq 1, for singlet and triplet two-electron
states we have the familiar result

since for two electrons we have

In the application of Heisenberg Hamiltonians, the exchange
coupling parameterJij is interpreted in terms of the electron
distribution as the Heitler-London exchange

where [ij |ij ] is the small positive two electron exchange energy,
and〈i|h|j〉 is dominated by the nuclear electron attraction being
large and negative. ThusJij is negative in general. The quantity

sij is the overlap of the orbitalsi and j, so thatJij becomes
positive only when the orbital overlap becomes very small.
Clearly, in making such an interpretation one is also associating
an electroni on sitei with an atomic orbital (AO) on centeri.

At this stage one must stress the fact that eq 1 corresponds
to a “model” with empirical parameters that reduces the problem
of chemical binding to coupling of electron spins. There is no
real physical coupling between the electron spins (except for
relativistic terms which are assumed to be negligible). Thus
the problem of constructing an ab initio quantum chemistry
theory that yields such a model requires some careful consid-
eration. Anderson27awas the first to recognize that Heisenberg
Hamiltonians might be understood as effective Hamiltonians
computed from an exact full CI Hamiltonian using a model
space of neutral VB determinants formed fromn electrons inn
AO. The use of such spaces in quantum chemistry was first
proposed in this context by the Toulouse School,27 and we have
successfully implemented a scheme28 where the Q and J
parameters are derived from CASSCF computations. Clearly,
in a rigorous (i.e., faithful) implementation of eq 1 one must
be able to associate an electroni on sitei with an AO on center
i. This implies that the orbitals are localized on atomic sites
(i.e., localized AO). Further,ĤS is only defined on a space of
many electron functions spanned by a basis where the space
part of all the configurations is the same and the configurations
differ only in the spin part. This implies that the space on which
ĤS acts is the space of VB determinants where each spatial
orbital occurs once (i.e., neutral VB determinants).

Now, we must write eq 1 in a form suitable for implementa-
tion in quantum chemistry. We assume that we have an orbital
basis of AO that can be identified with sitesi andj in eq 1. The
second quantized form of eq 1 then takes the form

wherei(1) andj(2) are AO localized in sitesi and j andai
+,ai

are creation and annihilation operators. For practical purposes,
the Hamiltonian 5 can be rewritten [see, for example, ref 28a]
in terms of the standard generatorsÊij

σσ ) aiσ
+ajσ of the unitary

groupU(n) in the form whereσ ) R,â

Now eq 6 forms the basis of a quantum chemistry implementa-
tion of eq 1 since the expectation values of the bilinear forms
in eq 6 are just standard two-particle density operators (“sym-
bolic” density matrices) for a CI computation. It is also obvious
that the operators in eq 6 only connect configurations where
the space part of configurations is the same and the configura-
tions differ only in the spin part. Thus, the Heisenberg
Hamiltonian acts on the space of VB determinants where each
spatial orbital occurs once. As we have demonstrated else-
where,28b any full CI Hamiltonian can be projected onto such a
space and a subset of the eigenvalues can be reproduced exactly.
Therefore, the matrix representation of eq 6 on the space of
neutral VB determinants forms a completely rigorous imple-
mentation of a Heisenberg Hamiltonian.

ĤS ) Q - ∑
i,j

Jij(2Ŝi‚Ŝj + 1/2Î ij) (1)

ES/T ) Q ( J12 (2)

-〈(2Ŝi‚Ŝj + 1/2Î ij)〉
S/T ) (1 (3)

Jij ) [ij |ij ] + 2sij 〈i|h|j〉 (4)

ĤS ) Q - ∑
i,j

N

Jij〈i(1) j(2)|Ŝ(1)‚Ŝ(2) +

1

4
Î(1,2)|i(1) j(2)〉ai

+ aj
+ajai (5)

ĤS ) Q + ∑
i,j

M

Jij

1

2
(Êij

RR Êji
ââ + Êij

ââ Êji
RR + [Êij

RR Êji
RR - Êii

RR] +

[Êij
ââ Êji

ââ - Êii
ââ]) (6)

McConnell-I Model of Ferromagnetic Interactions J. Phys. Chem. A, Vol. 102, No. 43, 19988405



For subsequent comparison with the McConnell-I theory it
is convenient to introduce the spin exchange density matrixPij

[see ref 28c]. We can write the energy as the expectation value
in the form

The exchange density matrixPij can in turn be written either as

or (for practical purposes) as

Equation 9 is just a two-particle density matrix element [see,
for example, ref 28a] that can be obtained from any CI
computation. The exchange density must satisfy the relation-
ship29

whereN is the number of electrons.
This exchange densityPij obtained from a computation using

neutral VB determinants has a simple interpretation and is
indicative of the nature of the spin coupling between electrons
in orbitalsi andj. Using a single configuration perfectly paired
VB wave function (i.e., a Rumer function30), thePij have values
+1 for paired spins coupled antiparallel to a singlet,-1 for
two electrons coupled parallel to a triplet, and-1/2 for uncoupled
spins (i.e.,i and j belong todifferent “spin-paired” functions)
[see perfect pairing formula in ref 30]. Of course, thePij

computed from eq 9 will differ from these “ideal” values because
of configuration interaction. Thus, from a numerical point of
view, after configuration interaction, we cannot distinguish
between “triplet coupled” and “uncoupled spins”. Thus from
this point onward we shall refer to positivePij as “singlet
coupled” and negativePij as “triplet coupled”. SinceJij is
usually negative, the negativePij (triplet or uncoupled electrons)
are obviously associated with destabilizing interactions via eq
7.

McConnell’s Heisenberg Hamiltonian. In 1963, McCon-
nell15 suggested that the magnetic interaction between two
aromatic radicals A and B could be approximated by a
Heisenberg Hamiltonian of the following form:

in which Jij
AB are two-center exchange integrals, andŜi

A‚Ŝj
B is

the product of the spin operators on atomsi, j of fragmentsA
andB. One can easily cast this Hamiltonian into the form of
eq 5. Clearly, aside from the identity operator (corresponding
to a change in the zero of the energy), this Hamiltonian neglects
the intrafragment terms in eq 5.Thus the first fundamental
assumption in the McConnell-I theory is that the intrafragment
contributions are the same for each state on which the
Hamiltonian acts.

However, the Hamiltonian corresponding to eq 11 has never
been used in this form, but is replaced by an “ad hoc”
simplification given as

in which Jij
AB are two-center exchange integrals, andFi

A,Fj
B are

spin densities on atomsi, j of fragmentsA andB. The ŜA,ŜB

are the total spin operators for fragmentsA, B, and the
expectation value of the product is given by

At this stage it is important to stress that the Hamiltonian given
in eq 12 acts only on a model space (usually two-dimensional)
spanned by states of different spin multiplicity (e.g., a singlet
and a triplet), and thus has only diagonal elements. Further,
eq 12 is purely phenomenological. There is no systematic set
of approximations that gives eq 12 from eq 11.

For a two-level many-electron problem (i.e., two doublets
coupled to a triplet or singlet) one has〈ŜA‚ŜB〉T ) 1/4 and
〈ŜA‚ŜB〉S ) -3/4, respectively, so that

This result is the same as eq 2 except for the change of energy
zero. The effective coupling constantJ is given as

It remains now to relate the theory suggested by eq 11 with the
rigorous Heisenberg Hamiltonian model embodied in eq 1.

Comparison between McConnell-I Model with the Rigor-
ous Heisenberg Hamiltonian Model. To make a comparison
between McConnell-I model with the rigorous Heisenberg
development, one must consider energy differences. An
example where we consider the energy difference between a
singlet and triplet clarifies the main ideas. Thus for a singlet
and triplet, from eq 14 (McConnell-I model) we have

In contrast, from eq 7 (Heisenberg Hamiltonian model) we have

where the∆Pij is defined as

We emphasize thatPij
S and Pij

T are the singlet and triplet
exchange density matrixes obtained from singlet and triplet
eigenvectors (i.e., separate computations on the singlet and triplet
state). In contrastFi

A Fj
B is the product of the difference of spin

densities evaluated from two doublet fragments. Upon compar-
ing eqs 16 and 17, it is clear that the McConnell relationship is
valid only if we make the association

There is no obvious reason whyFi
A Fj

B and ∆Pij should be
related to each other than heuristically. This association thus
constitutes the most fundamental assumption of McConnell-I
model which has never been tested numerically.

〈ĤS〉 ) Q + ∑JijPij (7)

Pij ) 〈-(2Ŝi‚Ŝj + 1
2
Î ij)〉 (8)

Pij ) 〈12(Êij
RR Êji

ââ + Êij
ââ Êji

RR + [Êij
RR Êji

RR - Êij
ââ ] +

[Êij
ââ Êji

ââ - Êii
ââ])〉 (9)

S(S+ 1) ) -
1

4
N(N - 4) - ∑

i,j

Pij (10)

ĤAB ) - ∑
i∈A,j∈B

Jij
AB Ŝi

A‚Ŝj
B (11)

ĤAB ) -ŜA‚ŜB ∑
i∈A,j∈B

Jij
AB Fi

A Fj
B (12)

〈ŜA‚ŜB〉 ) 1
2
[S(S+ 1) - SA(SA + 1) - SB(SB + 1)] (13)

ES/T ) {3/4J

-1/4J} (14)

J ) ∑
i∈A,j∈B

Jij
AB Fi

A Fj
B (15)

ES - ET ) ∑
i∈A,j∈B

Jij
AB Fi

A Fj
B (16)

ES - ET ) ∑
i,j

Jij∆Pij (17)

∆Pij ) Pij
S - Pij

T (18)

∆Pij S Fi
A Fj

B (19)
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For triplet stability effective coupling constantJ in eq 15 must
be positive. Thus, since the set ofJij

AB are assumed to be
negative, thenFi

A Fj
B must be negative.(Note that in eq 16 one

MUST take the fragments A and B so that Sz
A ) 1/2, Sz

B ) 1/2).
However, there is a severe conceptual difficulty here. The case
whereFi

A Fj
B is negative is usually associated with “ferromag-

netic coupling”. As we shall see in the Results and Discussion
section, a negative∆Pij (corresponding to triplet stability) for
the “shortest contact” or interfragment sites arises from the case
wherePij

S and Pij
T are both negative but|Pij

S|〉|Pij
T|. Therefore,

the “shortest contact” sites in the singlet are more strongly
triplet coupled than the “shortest contact” sites in the triplet.
Thus the association of negatiVe Fi

A Fj
B with the concept of

ferromagnetic coupling is dubious from a conceptual point of
View.

A Practical Scheme for a McConnell-Like Decomposition
of the Singlet/Triplet Energy Separation. It is convenient to
illustrate the approach we will use by considering the spin
coupling of two doublet fragmentsA andB with radical centers
ν andµ as shown in Figure 1. In general, there are two types
of interfragment interactions, a first set which consists of the
“close contact atoms” and a second set consisting of the
remaining interactions. In the model shown in Figure 1, the
first set corresponds to the direct interactions between aligned
carbon atoms and the second to indirect interactions between
nonaligned carbon atoms. This partition will be useful for the
bis(phenylmethylenyl)[2.2]paracyclophane isomers we will dis-
cuss later. However, such a division must depend in general
on the system being studied.

The summation in eq 16 is restricted to interfragment
interactionsi ∈ A, j ∈ B, while the summation in eq 17 extends
over all atoms. Thus, to compare the predictions obtained from
eq 17 with the McConnell’s theory, we must partition the sum
in eq 17 in which both indexes are restricted to be on the same
fragment A, i.e.,{∆Pii ′}ii ′∈A, and interfragment contributions
{∆Pij}i∈A,j∈B. We now consider this point in more detail.

ThePij and∆Pij in eq 18, can be divided into an intrafragment
set{∆PAA} ) {∆Pii ′}ii ′∈A and an interfragment set{∆PAB} )
{∆Pij}i∈A,j∈B. It is then convenient to divide the interfragment
set into 3 contributions: (i){P1

AB} and {∆P1
AB}, the set of

direct interactions between aligned carbon atoms, (ii){P2
AB}

and {∆P2
AB}, the set of indirect interactions between non-

aligned carbon atoms, and (iii){P3
AB} and{∆P3

AB}, the set of
interfragment couplings of the radical centersν, µ themselves
together with the coupling of the radical centersν with the
centers on fragment B, and the coupling of the radical centers
µ with the centers on fragmentA. Thus{∆P3

AB} ) {∆Piµ ∪
∆Pjν ∪ ∆Pµν}i∈A,j∈B,j*µ,i*ν.

We now introduce some notation to simplify the presentation.
We shall use{Pr

AB}, {∆Pr
AB} to refer to a set of density matrix

elements and density difference matrix elements of typer (r )

1,2,3). We then usePr
AB and∆Pr

AB to denote the sum of the
quantities contained in the sets{Pr

AB} and {∆Pr
AB}. The

corresponding contributions to the energy will be written as
∆Er

AB. For example, ifr ) 3, then

Finally we use∆P and ∆E to denote the summation over all
contributions.

With these definitions to hand, there are some approximate
relationships that must hold if the McConnel-I model is to have
qualitative validity. First, the intrafragment spin coupling should
correspond to a doublet (i.e., theS2 eigenvalue is3/4). Thus,
from eq 10, the following relationship should hold approxi-
mately for fragmentA (or B)

Here NA is the number of electrons associated with fragment
A. Second, the McConnell-I theory neglects the intrafragment
coupling. Thus, all the elements of the set{∆PAA} should be
approximately zero and consequently∆EAA ) 0. Thus, if the
McConnell-I model is to have quantitative validity, theFi

A Fj
B

and the∆Pij must behave in a qualitatively similar fashion and
the set{∆PAA} must be approximately zero.

In the limit where the fragments do not interact, there are
two localizedelectrons in radical centersν and µ, these two
electrons can either couple to singlet or triplet. Thus, according
to the perfect pairing formula,30 the value of∆Pµν is given as

Further, the set of{∆P1
AB} and{∆P2

AB}, and all the contribu-
tions due to{∆P3

AB}, will be zero if there is no interaction
between the fragments except those arising fromPµν on the
localized electrons in radical centersν and µ. When the
fragments interact,∆PAA ) 0 and∆PAB ≈ 2, we have

and

where δ is a small positive quantity which arises from the
interaction of the fragmentsA, B.

However, the McConnell-I model is always used qualitatively.
The individual Jij

AB are never evaluated (but assumed to be
negative) and only theFi

A Fj
B are used to make predictions.

Thus, there are some additional assumptions, relating to
individual Jij

AB that are inherent in even the qualitative ap-
plication of the McConnell-I model. First, the contributions
from nonaligned “closest contact” sites, the{∆P3

AB}, are
completely ignored. However, the{∆P3

AB} are expected to be
large (see eq 24) so that the validity of McConnell’s approach

Figure 1. A schematic representation of the partition of the exchange
density for two aromatic doublet structures.

∆P3
AB ) ∑

i∈A,j∈B,
j*µ,i*ν

(∆Piµ + ∆Pjν + ∆Pµν) (20)

∆E3
AB ) ∑

i∈A,j∈B,
j*µ,i*ν

(Jiµ∆Piµ + Jjν∆Pjν + Jµν∆Pµν) (21)

SA(SA + 1) ) -
NA(NA - 4)

4
- ∑

ii ′∈A

Pii ′ )

-
NA(NA - 4)

4
- PAA ≈ 3

4
(22)

∆Pµν ) Pµν
S - Pµν

T ) 1 - (-1) ) 2.0 (23)

∆P3
AB ≈ 2 - δ (24)

∆P1+2
AB ≈ ∆P1

AB + ∆P2
AB ≈ δ (25)
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depends on all the members of the setJµν,{Jiµ ∪ Jjν}i∈A,j∈B,j*µ,i*µ
being zero (which is reasonable provided the radical centers
are far apart). Secondly, in qualitative applications of the
McConnell-I theory for aromatic molecules that are pancaked
on top of one another in crystals, one focuses on the contribution
from the aligned centers{∆P1

AB} and the contribution from
{∆P2

AB} is ignored so that McConnell’s theory effectively
makes a qualitative estimate of∆E1

AB. From eq 25, it is clear
that∆P1+2

AB is a small numberδ that results from sum of∆P1
AB

and∆P2
AB. Thus, it is clear that∆P1

AB and∆P2
AB must have a

similar magnitude but opposite sign. Therefore, qualitative
applications are only valid if the correspondingJij that are
combined with the{∆P2

AB} terms are very small. If these
conditions hold, the geometry and the relative singlet/triplet
ordering will be controlled by the{∆P1

AB} elements. Thus, if
the{∆P1

AB} are all negative the spin coupling will be triplet in
agreement with McConnell-I theory, which requiresFi

A Fj
B <

0. Further, theJij corresponding to{∆P1
AB} will be very

sensitive to distance because of the direct overlap of the carbon
atom pπ orbitals.

Computational Details

The [2.2]paracyclophanedicarbenes (e.g., pseudoortho,
pseudometa, and pseudopara bis(phenylmethylenyl)[2.2]-
paracyclophane (bPhMenyl) isomers) have been proposed to
provide a reasonably good model for examining the inter-
molecular magnetic interaction in reference to McConnell-I
model,25 since the spin-containing benzene rings of two diphe-
nylcarbene molecules are pancaked on top of one another in
the [2.2]paracyclophane skeleton. Experimental data available
for the bPhMenyl system shows that, among the three isomers
with different orientation of the two phenylmethylenyl substit-
uents, only the pseudoortho and pseudopara isomers present a
quintet ground state, while the singlet is the ground state in the
pseudometa stacking mode.25 However, strictly speaking, the
model is far from ideal: the two benzene rings incorporated in
the [2.2]paracyclophane structure are not planar but bent into a
boat form with interring distances not even (∼2.8-3.1 Å), and
the two rings are deeclipsed by 3.2° to avoid the ethano-type
eclipsing in the side chains.31

A recent study32 showed that theπ-electronic structure of
diphenylcarbene is very much like that of diphenylmethyl
radical, as indicated in Scheme 1. The important triplet state
of the carbene has one electron in the conjugatedπ-system.
Accordingly, it is sensible to model this system with a methyl
radical rather than carbene unit. Therefore, one would obtain
for bis(phenylmethyl)[2.2]paracyclophanes, a singlet ground
state for the pseudometa stacking mode and triplet ground state
for the pseudoortho and pseudopara ones. Further, the phenyl-
methyl radical can be replaced by a simple methyl radical, thus
giving rise to bis(methyl)[2.2]paracyclophane (namely, bMe),
since the phenyl attached to the methyl is not involved in the
π-electron reorganization related to singlet/triplet states.32

Energies and geometry optimization of the pseudoortho,
pseudometa, and pseudopara bMe model systems were carried
out by means of the Molecular Mechanics-Valence Bond

(MMVB) method. MMVB28 is a hybrid method, which uses
the MM2 potential33 to describe the inert molecularσ-bonded
framework and a Heisenberg Hamiltonian,27 parametrized
against CASSCF computations, to represent electrons on sp2/
sp3 carbon atoms which are involved inπ-conjugation or new
σ-bond formation. The Heisenberg Hamiltonian implemented
in MMVB is a faithful representation of eqs 5 and 6 and acts
on a basis set of neutral many-electron VB states constructed
from active orbitals which are singly occupied. ThePij matrix
elements are obtained from the CI vectors of the MMVB
Hamiltonian28c and provide a partition ofŜ(1)‚Ŝ(2) into inter-
actions between these sites.

The fundamental principles behind the parametrization of
MMVB via an effective Hamiltonian have been discussed in
ref 28b. The important point is the exchange parameters are
fitted to a CASSCF effective Hamiltonian. In ref 28b, we show
that these parameters can be interpreted in terms of an expansion
involving powers of the overlap. However, no overlap integrals
are ever computed in pratice. Thus, eq 4 is used for interpreta-
tive purposes only. The exchange parameters contain higher
powers of the overlap implicitly. Further, by construction, the
CASSCF effective Hamiltonian reproduces neutral covalent
states of all spin multiplicies, so there is no explict spin
dependence of the paremetrization.

Results and Discussion

For the bis(methyl)[2.2]paracyclophane (later on, bMe) model
system, the MMVB optimization28 of the pseudoortho,
pseudometa, and pseudopara isomers was carried out for both
the singlet and the triplet states. In addition, the singlet/triplet
crossing geometries were characterized and located. The
geometries for minima and the singlet/triplet crossing geometries
are shown in Figure 2 [Cartesian coordinates for all critical
points are available in Table 1S (Supporting Information)]. At
the lowest energy optimized structures (triplet in the case of
the pseudoortho and -para structures, and singlet in the case of
the pseudometa structure), a decomposition of the singlet/triplet
energy difference was carried out in terms of the{∆Pr

AB}.
These data are presented in Tables 1 and 2 [thePij

S/T contribu-
tions to∆P for all three bMe isomers evaluated at the ground-
state geometry are listed in Tables 2S (Supporting Information),
and the correspondingJij are in Table 3S (Supporting Informa-
tion)].

The relative ordering of the singlet and triplet states is
indicated in column 2 of Table 1 and is in agreement with that
observed experimentally for the low-spin meta and high-spin
ortho/para isomers of bis(phenylmethylenyl)[2.2]paracyclophane
(later on, bPhMenyl).25 The absolute value of the energy
difference between singlet and triplet states at the optimized
geometries is similar for all three isomers (3 kcal mol-1). To
confirm that the conclusions regarding triplet versus singlet
stability arise mainly from the stacking orientation of the benzyl
groups in the paracyclophane, we also carried out a series of
computations with two planar benzyl radicals placed 3 Å apart
in the ortho, meta, and para orientations. The results are
qualitatively similar to the results on the optimized paracyclo-
phanes and will not be included here.

We begin with a brief discussion of the optimized geometries
in Figure 2. The geometries for the singlet and triplet states
differ only by ca. 0.001-0.07 Å with respect to interfragment
C-C bond lengths. Thus, the main factors that control singlet/
triplet stability are electronic in origin rather than geometric.
This conclusion is reinforced by a consideration of the geom-
etries where singlet and triplet states cross. In each case, the

SCHEME 1
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crossing occurs when the interfragment bond distances are
increased from ca. 2.9 Å to ca. 3.3 Å so that the interfragment

Jij falls to near zero. Therefore, the relative stability of singlet
and triplet persists as the interfragment distances are increased

Figure 2. The optimized MMVB interfragment distances for pseudo- (a) ortho-, (b) meta-, and (c) para-bis(methyl)[2.2]paracyclophane (S)
singlet, T) triplet, X ) surface crossing).
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until the interfragment interactions fall to zero. The interfrag-
ment-ring distances for the singlet and triplet states agree with
the available experimental data (2.8 and 3.1 Å in bPhMenyl31).
Thus, the bMe model system appears to be a good model of
the bPhMenyl system (as expected since none of the phenyls
attached to the methylenyl is involved in theπ-electron
reorganization25).

We now turn our attention to the analysis of the singlet/triplet
energy difference∆EAB in terms of the components of∆PAB

given in Table 1. The individual components of∆PAB for all
the interfragment interactions are collected in Table 2. One
must stress that this analysis is only sensible if∆EAA ) ∆EBB

) 0. In all examples, this contribution computed to be less
than 0.2 kcal mol-1. Moreover, for each fragment, the computed
intrafragmentPAA andPBB are-6.0 (corresponding to a doublet
in eq 22 withNA ) NB ) 7), irrespective of whether the overall
spin coupling is triplet or singlet so that∆PAA(∆PBB) is zero.

The Fi
A Fj

B25 are negative for the pseudoortho and -para
species and positive for the pseudometa species according to
the McConnell model, and thus, triplet ground states are
predicted for the former and singlet for the latter. The computed
values of{∆P1

AB} collected in the diagonal elements (bold) of
Table 2 are in remarkable agreement with the qualitative model
of McConnell. Thus the{∆P1

AB} components are negative for
the pseudoortho and -para species (which have triplet ground

states), and positive for the pseudo-meta species (which has a
singlet ground state). Thus eq 19 appears to hold numerically.

Now let us examine some other aspects of the McConnell-I
model that are necessary for reliable predictions. The{∆P2

AB}
and {∆P3

AB} are ignored in the McConnell model; however,
the {∆P2

AB} and {∆P3
AB} in Table 2 are clearly not zero.

Rather they have large positive and negative elements. First,
as predicted in eq 24,∆P3

AB ≈ 2. However, because the
correspondingJij elements (see Table 3S) are all small we have
∆E3

AB ≈ 0.0 (Table 1), so this term does not contribute to
singlet versus triplet stability. Second, from Table 1,∆P1+2

AB ≈
δ (as suggested in eq 25) because∆P2

AB and ∆P1
AB have

opposite sign. However,∆E2
AB is not negligible. Thus, the

singlet versus triplet stability results from a competition between
∆E1

AB and ∆E2
AB. For all the examples studied|∆E1

AB| >
|∆E2

AB|, so that∆E1
AB alone gives a qualitative prediction that

is in agreement with McConnell-I model. This situation arises
because the magnitudes ofJij (see Table 3S) that are combined
with the{∆P2

AB} are in general smaller than the magnitudes of
Jij that are contracted with the{∆P1

AB}.

Conclusions

If one compares eqs 16 and 17, it is clear that singlet/triplet
stability depends on the sign and magnitude ofFi

A Fj
B or ∆Pij,

and on the magnitude of theJij that are combined with the
Fi

A Fj
B or ∆Pij. In this work we have included both effects on

the bMe model system that is related to the bPhMenyl standard
normally used to test the validity of the McConnell-I relation-
ship. Remarkably, the predictions obtained from our Heisenberg
Hamiltonian defined in eq 17, are in complete agreement with
the qualitative predictions from eq 16 because of fortuitous
cancelations. This agreement arises because the signs ofFi

A Fj
B

and∆Pij are the same and manyJij are zero. We now discuss
the origin of this effect in more detail.

It is clear that the agreement of the predictions of the
McConnell-I model (eq 16) and our Heisenberg Hamiltonian
(eq 17) arises because the partition into{∆P1

AB}, {∆P2
AB}, and

{∆P3
AB} is possible, and the contribution from{∆P1

AB} domi-
nates. The individual{∆P2

AB} and {∆P3
AB} are large and

contain both positive and negative elements; however, this
contribution is not important because the correspondingJij are
very small. Thus, the McConnell-I model makes a correct
prediction for our paracyclophane model by the lucky chance
that |∆E1

AB| > |∆E2
AB|. In general, when the atoms are not

perfectly aligned, one can expect that the∆E2
AB will not be

negligible. In this case, a qualitative prediction using the
McConnell model is impossible without an a priori knowledge
of the Jij. Further, it is clear theJij have strong orientational
and directional properties. Thus, when∆E1

AB and∆E2
AB have

similar magnitude (but opposite sign), the question of singlet/
triplet stability will depend on subtle details of orientation
manifested in the behavior of theJij.

The preceding discussion masks a severe conceptual problem.
The computed “closest contact” couplings{P1

AB} (see Table
2S) arealwaysnegative, irrespective of whether the ground state
is triplet or singlet. Thus, a negative∆P1

AB (corresponding to
triplet stability) can be obtained if|P1

AB|S > |P1
AB|T. (In the

“ideal” case where the wave function is just a simple Rumer
function the Pij have values-1 for two electrons coupled
parallel to a triplet, and-1/2 for uncoupled spins, i.e.,i and j
belong todifferent“spin-paired” functions). Since the dominant
Rumer function in the wave function must involve intrafragment

TABLE 1: Interfragment Exchange Density Matrices
Differences∆Pr

AB and Contributions to the Total Energy
∆Er

AB. All Energy Differences in kcal mol-1

isomer stucture ∆EAB
∆P3

AB

∆E3
AB

∆P1
AB

∆E1
AB

∆P2
AB

∆E2
AB ∆P1+2

AB

pseudoortho Tmin 2.9493 1.834 -1.355 1.508 0.153
0.3765 3.7651 -1.1923

pseudometa Smin -2.1963 1.666 1.264 -0.942 0.322
-0.1255 -3.5768 1.5060

pseudopara Tmin 2.6983 1.831 -1.370 1.525 0.155
0.0000 4.0161 -1.3178

TABLE 2: Interfragment Exchange Density Matrices
Differences{∆PAB} for the Minima a

atom number 1 2 3 4 5 6 7

(a) Pseudoortho (Triplet Minimum)
8 -.236 .320 .326 -.299 .388 -.231 .609
9 .137 -.198 -.194 .175 -.231 .138 -.356

10 .175 -.245 -.258 .230 -.299 .175 -.467
11 -.190 .267 .273 -.258 .326 -.194 .509
12 .132 -.188 -.190 .175 -.236 .137 -.352
13 -.188 .262 .267 -.246 .320 -.198 .497
14 -.352 .496 .509 -.467 .609 -.355 .957

(b) Pseudometa (Singlet Minimum)
8 .121 -.172 -.171 .146 -.198 .116 -.292
9 -.171 .270 .259 -.221 .303 -.174 .445

10 -.172 .263 .269 -.225 .306 -.174 .359
11 .116 -.174 -.174 .158 -.205 .119 -.301
12 -.198 .307 .303 -.264 .370 -.205 .531
13 .146 -.226 -.221 .192 -.264 .158 -.387
14 -.292 .452 .445 -.387 .531 -.301 .785

(c) Pseudopara (Triplet Minimum)
8 -.239 .326 .329 -.305 .397 -.233 .613
9 .176 -.260 -.249 .230 -.305 .179 -.465

10 .137 -.192 -.199 .179 -.233 .137 -.356
11 -.190 .267 .268 -.260 .326 -.192 .501
12 .132 -.190 -.189 .176 -.239 .137 -.351
13 -.189 .268 .268 -.250 .329 -.199 .503
14 -.350 .501 .502 -.465 .613 -.356 .948

a ∆P1
AB bold italic; ∆P2

AB plain type; ∆P3
AB bold. Atom numbers

correspond to Figure 2.
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spin coupled pairs, the interfragment coupling is mainly that of
uncoupled electrons. Therefore, we expect that thePij for the
“closest contact” sites should be ca.-1/2. In fact, the MMVB
“closest contact” couplings are all negative and range from about
-0.3 to -0.6, which is in agreement with this observation.
According to McConnell-I, the case whereFi

A Fj
B is negative is

usually associated with “ferromagnetic coupling”. Similarly a
negative∆P1

AB is associated with triplet stability. Thus, we
are left with the difficulty of explaining why the triplet stability
implies that the “closest contact” sites are more strongly
ferromagnetically coupled (i.e., with a negativeP1

AB) in the
singlet state than in triplet state for the case where the ground
state is a triplet. The answer turn out to be remarkably simple
as we now discuss.

In Figure 3 we show the leading determinants in the singlet
and triplet wave functions that were used to compute thePij.
The + and - in the figure indicate the spin (R or â) of the
orbital on the corresponding site for singlet (S) and triplet (T).
Remarkably, the spin arrangements for the triplet (|Sz| ) 1) are
in agreement with those suggested by the McConnell model
(Figure 3b, d, f). From eq 9 for a single determinant,Pij ) -1
for electrons of same spin andPij ) 0 for different spin. We
have given the value of the sum of the ideal “closest contact”
Pij values as∑P1

AB in Figure 3. Clearly, for the first term in
the wave function the “closest contact”Pij for the singlet in the
case of a triplet ground state (Figure 3 a/b and c/d) are negative,
while the situation is inverted for the case of the singlet ground

state (Figure 3 e and f). Thus, as said before, triplet stability
implies that the “closest contact” sites are more strongly
ferromagnetically coupled in the singlet state than in triplet state
for the case where the ground state is a triplet. Therefore, the
McConnell model appears to correctly predict the stability of
the leading term in the VB wave function. The magnitudes of
the ∆P1

AB are predictable crudely from the leading term in the
wave function. However, there is no reason to expect this
situation to hold in general.

Thus, the McConnell-I model gives the correct prediction of
singlet/triplet stability for the bis(methyl)[2.2]paracyclophane
example because many contributions are small and the associa-
tion ∆Pij S Fi

A Fj
B is sensible. Further, the McConnell model

seems to predict the leading determinants in the wave function
correctly. However, the predictive value of the McConnell
model must be limited in general because the orientational
dependence of the model via theJij is never studied.

Finally, we believe that the methods used in this study are
quite generally applicable to other related problems in magne-
tism. An example is the related problem of ferrimagnetism
which arises form the coupling of two spins of different
magnitudes in such a way, that one never has anS) 0 coupling.
McConnell I is a through space mechanism while ferrimag-
netism is often through-bond in polymetalates. But the formal-
ism descibed in ths work is equally applicable. Another
example of a through-bond mechanism is the Dougherty
model.2c An application to this problem is published else-
where.34
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